
CHAPTER 2

RESONANT CIRCUITS



2-2
SERIES AND PARALLEL CIRCUITS

It is useful to remember that an impedance Z (admittance Y) can 
always be represented by Z Rs jXs+=  ( Y Gp jBp+= ) where
Rs is the resistance and Xs the reactance (Gp is the conductance 
and Bp the susceptance). This representation is equivalent to a 
series (parallel) connection of a resistance Rs (conductance Gp) 
and a reactance Xs (susceptance Bp) (cf Fig. 2-1).

Fig 2-1: Series and parallel circuits.
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a) Series circuit. b) Parallel circuit.

The impedance and the admittance being inverses of each other, 
they are related by:

Z Rs jXs+≡ 1
Y
--- 1

Gp jBp+
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2+
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(2.1)

where:
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(2.2)
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2-3
QUALITY FACTOR

Inductors introduce losses represented by a series resistance. 
The ratio between the energy stored in the inductance and the 
energy dissipated in the resistance is defined as the quality fac-
tor of the inductor. Likewise, the quality factor of a capacitor is 
the ratio between the energy stored in the capacitance and the 
energy dissipated in the series resistance which represents the 
losses in the dielectric.
In general, the quality factor of a series circuit and a parallel 
circuit is defined by:

Q
Xs
Rs
--------≡

Bp
Gp
---------

Rp
Xp
---------= = (2.3)

In the cases of inductive and capacitive circuits, we have respec-
tively:

Q
ωLs
Rs

---------
Rp
ωLp
----------= = Q 1

ωRsCs
---------------- ωRpCp= =

Fig 2-2: Definition of quality factor.
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(2.4)
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2-4
SERIES / PARALLEL TRANSFORMATION

It is often useful in HF to be able to convert a series circuit to 
its parallel equivalent or vice versa, as indicated in Fig. 2-3. This 
technique is used for example to synthesize an impedance 
matching network between two given impedances.

Fig 2-3: Series / parallel conversion. 

Rp

Xp

Rp

Xp

Rs Xs

Rs Xs

equivalence valid for one single frequency!

When a series circuit is converted to its parallel equivalent (or 
vice versa), it is useful to express Eqn. 2.2 as a function of the 
quality factor of the circuit:

Rs
Rp

1 Q2+
----------------= Xs

Xp

1 1 Q2⁄+
-----------------------=

Rp Rs 1 Q2+( )= Xp Xs 1 1 Q2⁄+( )=

(2.5)

where Rp 1 Gp⁄≡  and Xp 1 Bp⁄–≡  . Note that the quality fac-
tor of the series circuit is identical to that of the parallel cir-
cuit. It is given by Eqn. 2.3 or 2.4.
In addition, it is important to notice that the reactances of 
series and parallel circuits depend on the frequency and there-
fore that this circuit conversion is only valid for one single fre-
quency.
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2-5
SERIES RESONANT CIRCUITS

The impedance of the series resonant circuit shown in Fig. 2-4 is 
given by:

Z
Vin
I-------≡ R j XL XC+( )+=

Fig 2-4: Series resonant circuit.

I

R

L C

Vin Vout

ω0
1
LC

-----------=

Q 1
ω0RC
---------------

ω0L
R

---------- 1
R
--- L

C
----⋅= = =

(2.6)

This impedance is minimum (and therefore the current is maxi-
mum for a constant amplitude of applied voltage), when:

X– L XC= or ω0L 1
ω0C-----------= (2.7)

This equality is only true at one frequency, called the resonant 
frequency f0 (or ω0 in radians):

ω0 2πf0
1
LC

-----------= = (2.8)

At this frequency, the reactance of the inductor is compensated 
by the reactance of the capacitor, and therefore the output 
voltage Vout is equal to the input voltage Vin . The transfer func-
tion for the voltage is given by:

Av s( )
Vout s( )
Vin s( )----------------≡ sRC

s2LC sRC 1+ +
---------------------------------------

s
ω0Q-----------

s
ω0
------⎝ ⎠
⎛ ⎞ 2 s

ω0Q----------- 1+ +
------------------------------------------= = (2.9)
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2-6
POLES

This circuit has two poles given by:

p1 2,

ω0
2Q
-------– ω0 1 2Q( )2⁄ 1–⋅± for: Q 1 2⁄< (real poles)

ω0
2Q
-------– jω0 1 1 2Q( )2⁄–⋅± for: Q 1 2⁄> (complex poles)

⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

(2.10)

The poles corresponding to Eqn. 2.10 are presented in Fig. 2-5. 
The poles are real for Q 1 2⁄<  (R 2 L C⁄> ), confounded for
Q 1 2⁄=  (R 2 L C⁄= ) and complex for Q 1 2⁄>
(R 2 L C⁄< ).

Fig 2-5: Poles of the transfer function.
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The harmonic response is obtained by replacing s by jω in 
Eqn. 2.9:

Av jω( )
j ω
ω0Q-----------

1 ω
ω0
------⎝ ⎠
⎛ ⎞ 2

j ω
ω0Q
-----------+–

------------------------------------------- 1

1 jQ
ω 
ω0
------

ω0
ω 
------–⎝ ⎠

⎛ ⎞+
----------------------------------------- 1

1 jQx+
------------------= = =

(2.11)
where x is the misalignment. For ωΔ ω ω0–( )<<ω0≡  the mis-
alignment is approximately equal to 2 ωΔ ω0⁄  and therefore pro-
portional to the distance of the frequency from the resonance.
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2-7
BANDWIDTH

The power dissipated in the resistor is given by:

PR
Vout

2

R---------- Av jω( ) 2Vin
2

R------- Av jω( ) 2Pmax= = = (2.12)

It is maximum when Av jω( ) 2 1= , meaning at the resonance. 
We therefore define the frequencies at –3 dB as those for 
which the power dissipated in the resistor is equal to half of the 
maximum power Pmax , which corresponds to the frequencies ω1
and ω2 for which Av jω( ) 1 2⁄=  or where x 1 Q⁄±= :

x1
ω1
ω0
------

ω0
ω1
------– 1

Q
----–=≡ x2

ω2
ω0
------

ω0
ω2
------– + 1

Q
----=≡ (2.13)

Due to the geometric symmetry of Av jω( )  around ω0 , the fre-
quencies at –3 dB, ω1 and ω2, are such that:

ω1ω2 ω0
2= (2.14)

ω1 and ω2 can be calculated from:

ω0
2

ω2
------ ω1= et: ω2

ω0
2

ω2
------– ω2 ω1–

ω0
Q
------= = (2.15)

The difference between the frequencies at –3 dB is defined as 
the bandwidth at –3 dB:

B 3dB– ω2 ω1–≡
ω0
Q------ ω0

2 RC⋅ R
L---= = = (2.16)
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2-8
HARMONIC RESPONSE

Fig 2-6: Transfer function A jω( ) .
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2-9
FILTERING OF HARMONICS

The attenuation of a sinusoidal signal which is a harmonic fre-
quency of the resonant frequency ω n ω0⋅=  can be calculated 
from:

A nω0( ) 1

1 Q2 n 1 n⁄–( )2+
----------------------------------------------- n

Q n2 1–( )
------------------------ 1

Qn
-------≅ ≅=

Q>>1 n>>1

(2.17)

The attenuation of harmonics is better when the quality factor 
is higher. This criterion can help when choosing the quality fac-
tor of a resonant circuit.

VOLTAGE AT THE TERMINALS OF THE CAPACITOR AT 
RESONANCE

One interesting property of the series resonant circuit is that 
the voltage at the terminals of the capacitor can become much 
higher than the applied voltage. The transfer function between 
the input voltage and the voltage at the capacitor terminals is 
given by:

AC jω( )
VC
Vin
-------≡ 1

1 ω
ω0
------⎝ ⎠
⎛ ⎞ 2

j 1
Q----+–

------------------------------------= (2.18)

At resonance, the gain is equal to the quality factor:

AC ω ω0=( ) Q= (2.19)

At resonance, the voltage at the capacitor terminals is thus 
equal to Q times the input voltage. Since the reactances of the 
inductor and the capacitor are equal at resonance, the voltage at 
the inductor terminals will also be Q times larger than the input 
voltage.
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2-10
EFFECT OF THE SOURCE RESISTANCE

Fig 2-7: Series resonant circuit with source resistance.

Rs

RL

L C

Vin Vout

In the case in which the source resistance Rs is not negligible 
with respect to the load resistance RL, the transfer function of 
the circuit in Fig. 2-7 is given by:

Av s( )
Vout s( )
Vin s( )
----------------≡ A0

s
ω0Q-----------

s
ω0
------⎝ ⎠
⎛ ⎞ 2 s

ω0Q
----------- 1+ +

------------------------------------------⋅= (2.20)

The transfer function given by Eqn. 2.9 is multiplied by the 
attenuation factor A0 RL Rs RL+( )⁄=  introduced by the 
resistive divider operating at resonance. The quality factor is 
degraded by the presence of the source resistance:

Q
ω0L

Rs RL+------------------= (2.21)

The addition of a series resistance decreases the quality factor 
without changing the resonant frequency which remains equal to 
ω0 1 LC⁄=  .
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2-11
PARALLEL RESONANT CIRCUIT

The parallel resonant circuit shown in Fig. 2-8 is the dual of the 
series resonant circuit of Fig. 2-4. It has, therefore, all the 
properties stated for the series resonant circuit. In this case, 
the admittance has a minimum when the susceptance of the 
inductor is equal to that of the capacitor. Again, this equality is 
only true at the resonant frequency given by Eqn. 2.8. The gain in 
current Ai s( ) Iout Iin⁄≡  is identical to Eqn. 2.9.

Fig 2-8: Resonant parallel circuit.

Rp

IoutIin

L C

ω0
1
LC

-----------=

Q
Rp
ω0L
---------- ω0RpC Rp

C
L
----⋅= = =

Vout

The quality factor is simply given by:

Q
Rp
ω0L---------- ω0RpC Rp

C
L----⋅= = = (2.22)

In contrast to the series resonant circuit, the quality factor of 
the parallel resonant circuit is proportional to the parallel 
resistance. The higher this resistance, the higher the quality 
factor. The impedance of the parallel resonant circuit is simply:

Z s( )
Vout
Iin

-----------≡ Rp Ai s( )⋅ Rp

s L
Rp
------

s2LC s L
Rp
------ 1+ +

--------------------------------------⋅ Rp

s
ω0Q-----------

s
ω0
------⎝ ⎠
⎛ ⎞ 2 s

ω0Q----------- 1+ +
-------------------------------------------⋅= = = (2.23)

As with the voltage at the terminals of the capacitor and the 
inductor of the series resonant circuit, the currents through 
those same elements of the parallel resonant circuit are Q times 
higher than the input current Iin at resonance.
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2-12
PARALLEL RESONANT CIRCUIT WITH LOSSES

The impedance of the circuit in Fig. 2-9 is given by:

Z s( ) rs

s L
rs
---- 1+

s2LC srsC 1+ +
----------------------------------------⋅ rs

s L
rs
----

s2LC srsC 1+ +
----------------------------------------⋅≅= for: ω>>

rs
L---- (2.24)

For ω>>rs L⁄ , the zero can be considered to be practically at 
the origin and Eqn. 2.24 is identical to Eqn. 2.23 of the parallel 
resonant circuit, as long as L Rp⁄ rsC=  or:

Rp
L

rsC--------
ω0L( )2

rs
----------------- rs QL

2⋅= = =

Fig 2-9: Approximation of the resonant circuit with losses.

rs

Iin L

C Rp
ω0L( )2

rs
------------------=

Iin

LC

ω>>
rs
L
----

QL
ω0L

rs
----------= Qcircuit

Rp
ω0L----------

ω0L
rs

---------- QL= = =
inductor

losses

(2.25)

Therefore, for ω>>rs L⁄  , the resonant circuit with a resist-
ance rs in series with the inductor can be replaced by a parallel 
resonant circuit with a parallel resistance Rp given by Eqn. 2.25. 
This approximation is almost always valid because one does not 
choose an inductor with a mediocre quality factor to make a cir-
cuit with a high quality factor. It is interesting to note that the 
quality factor of the parallel equivalent circuit defined as 
Q Rp ω0L( )⁄=  is identical to the quality factor of the induc-

tor QL ω0L( ) rs⁄=  . This quality factor is often called the 
unloaded quality factor (without load). The addition of a parallel 
load resistance will reduce the quality factor of the circuit.
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2-13
COUPLING PARALLEL RESONANT CIRCUITS

For a given resonant frequency, the quality factor sets the 
bandwidth, but the sharpness of the filter is uniquely deter-
mined by the filter’s order, that is to say by the number of reac-
tive components. To obtain a filter with a form factor SF close 
to one (cf Fig. 2-10), several coupled resonant circuits must 
therefore be used (cf Fig. 2-11).

Fig 2-10: Definitions related to filter response.

SF
f4 f3–
f2 f1–
--------------≡

Fig 2-11: Selectivity with one or two coupled resonant circuits.
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2-14
CRITICAL COUPLING

The intensity of the coupling between two resonant circuits will 
strongly influence the transfer function of the resulting filter. 
We distinguish three situations:

a)Undercoupling: too little coupling leads to high insertion 
losses (cf Fig. 2-10 and 2-12);

b)Overcoupling: too much coupling will misalign the two reso-
nant circuits, which results in peaks at the extremities of 
the passband and a dip in the passband;

c)Critical coupling: the two circuits are just coupled enough 
to avoid insertion losses while keeping a sufficient pass-
band.

Fig 2-12: The different coupling situations.
There are three ways to couple two resonant circuits:

1)Capacitive coupling;
2)Inductive coupling;
3)Coupling by transformer.

Another more sophisticated way to couple resonant circuits is 
that of LC ladder filters. 
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2-15
CAPACITIVE COUPLING (1/2)

The circuit corresponding to the capacitive coupling of two reso-
nant circuits is presented in Fig. 2-13. The coupling is realized by 
the capacitor Cc whose value determines whether the coupling is 
under, at, or over the critical level.

Fig 2-13: Capacitive coupling of two resonant circuits.

R1 L1 Ca Cb L2 R2

Cc

IS

The circuit in Fig. 2-13 can be modified by considering that the 
coupling admittance (of Cc) can be replaced by the equivalent 
circuit of Fig. 2-14.

Fig 2-14: Equivalent circuit of the coupling admittance.

YcI1 I2

V1 V2 Yc

I1 I2

V1 V2Yc
Yc V2 Yc V1

Applying this substitution to the circuit of Fig. 2-13 we obtain 
the circuit in Fig. 2-15 in which we clearly see two parallel reso-
nant circuits with admittance Y1 and Y2 , along with the coupling 
by the dependent current sources.

Fig 2-15: Equivalent circuit for circuit in Fig. 2-13.

R1 L1 C1 C2 L2 R2

IS

YcV2 YcV1

V2V1

C1 Ca Cc+= C2 Cb Cc+=

    

Y1

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

    

Y2

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

Yc sCc=
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2-16
CAPACITIVE COUPLING (2/2)

Each resonant circuit in Fig. 2-15 is characterized by its reso-
nant frequency and its quality factor:

ω0i 1 LiCi⁄≡ Qi Ri ω0iLi( )⁄ ω0iRiCi=≡ i 1 2,= (2.26)
The admittance of each of the resonant circuits is given by:

Yi
1
Ri
----- 1 jQi

ω
ω0i
--------

ω0i
ω

--------–
⎝ ⎠
⎜ ⎟
⎛ ⎞

+⋅ 1
Ri
----- 1 jQixi+[ ]⋅= = i 1 2,= (2.27)

The transimpedance is thus given by:

Zm jω( )
V2
IS
------≡

Yc

Y1Y2 Yc
2–

------------------------= (2.28)

Considering that the resonant frequencies are equal, 
ω01 ω02 ω0= =  , we get:

Zm jω( )

jω
ω0
------KR

1 jω
ω0
------K⎝ ⎠
⎛ ⎞ 2

– Qx( )2– j2qQx+
------------------------------------------------------------------------=

R R1R2≡ Q Q1Q2≡ q 1
2
---

Q1 Q2+( )

Q1Q2
-------------------------≡ k

Cc

C1C2
------------------≡ K kQ ω0RCc=≡

(2.29)

Q is the average quality factor, and q the quality factor dispar-
ity coefficient which is minimum and equal to one for Q1 Q2= . 
It is represented in Fig. 2-16 as a function of the ratio Q2 Q1⁄ .
k is the coupling coefficient which is always less than one 
because C1 and C2 are both greater than Cc (cf Fig. 2-15).

Fig 2-16: Quality factor disparity coefficient.
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2-17
INDUCTIVE COUPLING

The coupling between two parallel resonant circuits can also be 
carried out by using a coupling inductor Lc , as shown in Fig. 2-
17 a)

Fig 2-17: Resonant circuits coupled inductively.

R1 LaC1 C2Lb R2

Lc

IS

a) Resonant circuits coupled inductively.

R1 L1 C1 C2 L2 R2

IS

YcV2 YcV1

V2V1

L1
1– La

1– Lc
1–+= L2

1– Lb
1– Lc

1–+=

    

Y1

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

    

Y2
⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

Yc 1 sLc( )⁄=
b) Equivalent circuit for a)

.

Eqn. 2.28 remains true with Yc 1 sLc( )⁄= . In the case in which 
the resonant frequencies are equal, we get:

Zm jω( )

ω0
jω------KR

1
ω0
jω
------K⎝ ⎠
⎛ ⎞

2
– Qx( )2– j2qQx+

------------------------------------------------------------------------= (2.30)

All the magnitudes defined in (2.29) remain valid except K which 
becomes K kQ≡ R ω0Lc( )⁄=  where k  is given by:

k
L1L2
Lc

----------------= (2.31)
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2-18
COUPLING BY TRANSFORMER

The coupling of two parallel resonant circuits can also be carried 
out by using a transformer as shown in Fig. 2-18.

Fig 2-18: Resonant circuits coupled by a transformer.

R1 LpC1 C2Ls R2

M
IS

The circuit of Fig. 2-18 can be modified by using the equivalence 
relation shown in Fig. 2-19. The circuit in Fig. 2-18 is thus 
returned to that of Fig. 2-17.

Fig 2-19: Equivalent circuit of a coupling transformer.

Lp Ls

M

M

Lp M– Ls M–

La Lb

Lc

The relationships obtained for the circuit with inductive coupling 
are therefore also valid for coupling by transformer, by using 
the following equalities:

L1 La//Lc≡ Lp 1 k2–( )=

L2 Lb//Lc≡ Ls 1 k2–( )=

Lc
LpLs
k--------------- 1 k2–( )

L1L2
k----------------= =

k M
LpLs

---------------
L1L2
Lc

----------------= =

(2.32)
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2-19
CRITICAL AND TRANSITIONAL COUPLING (1/2)

The value of the transimpedance Zm at resonance is obtained by 
setting ω ω0=  in equations (2.29) and (2.30):

Zm ω0( ) j KR

1 K2+
----------------± jZmax

2K

1 K2+
----------------±= = (2.33)

The + sign corresponds to capacitive coupling and the - sign to 
inductive (or transformer). The magnitude of the transimped-
ance at resonance Zm  depends on the coupling factor K. Critical 
coupling results for the value of K which maximizes Zm , which 
is K 1= :

Zmax Zm K 1=
≡ R 2⁄= (2.34)

In fact, it corresponds to the maximum transfer of power to the 
resistor R2 and therefore to impedance matching.
When the coupling factor K is higher than a certain value called 
the transitional coupling Kt, the magnitude of the transimped-
ance shows two peaks at the frequencies ω M–  and ω+M  as indi-
cated in Fig. 2-20. 

Fig 2-20: Peaks due to overcoupling.

K Kt>

Kt 2q2 1–≡ 1
2---

Q1
Q2
-------

Q2
Q1
-------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

ZM
KR

2q 1 K2 q2–+
--------------------------------------≡

Zm

ZM

The value of the maxima Zm is given by:
ZM

KR

2q 1 K2 q2–+
--------------------------------------= (2.35)

One remarks that ZM Zmax=  for q 1=  or for Q1 Q2= .
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2-20
CRITICAL AND TRANSITIONAL COUPLING (2/2)

Fig. 2-21 a) shows the magnitude of Zm Zmax⁄  as a function of 
misalignment Qx for different values of the normalized coupling 
coefficient K for the case in which Q1 Q2= . We remark that 
for K Kt> 1= , the curves show maxima where ZM equals Zmax . 
Fig. 2-21 b) shows the magnitude of Zm Zmax⁄  for the case in 
which the quality factors are different. We remark that the 
value ZM of the maxima decreases as K increases. According to 
Eqn. 2.35, it tends toward R 2q( )⁄  as K ∞→ .

Fig 2-21: Magnitude of the transimpedance as a function of Qx

Zm
Zmax
------------

Q1 Q2=

q 1=

Kt 1=

a) Q1 Q2=

Zm
Zmax
------------

Q2 8Q1=

q 1.591=

Kt 2.0156 2≅=

b) Q2 8Q1=
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2-21
ACTIVE COUPLING

It is also possible to couple resonant circuits using active 
devices such as transistors. An example of such a coupling is 
shown in Fig. 2-22 a). In the case in which all the resonant cir-
cuits in the diagram in Fig. 2-22 a) are identical (same frequency 
and quality factor), the global quality factor Qtot of the circuit is 
approximately given by:

Qtot
Q

21 n⁄ 1–
------------------------= (2.36)

where Q is the quality factor of each of the resonant circuits 
and n the number of resonant circuits.

Fig 2-22: Active coupling of resonant circuits.

L C L C L C

4.0

3.5

3.0

2.5

2.0

1.5

1.0
10987654321

Qtot
Q

----------

n

a) Example.
b) Global quality factor as a function of 

the number of resonant circuits 
(Eqn. 2.36).

Fig. 2-22 b) shows the global quality factor normalized to the 
quality factor of one single resonant circuit as a function of the 
number of stages. Notice that Qtot increases relatively slowly 
and therefore that the gain in selectivity is only interesting for 
a reduced number of resonant stages (typically 3 or 4).
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	In addition, it is important to notice that the reactances of series and parallel circuits depend on the frequency and therefore that this circuit conversion is only valid for one single frequency.


	series resonant Circuits
	The impedance of the series resonant circuit shown in Fig. 2-4 is given by:
	(2.6)
	Fig 2-4: Series resonant circuit.
	This impedance is minimum (and therefore the current is maximum for a constant amplitude of applied voltage), when:


	(2.7)
	This equality is only true at one frequency, called the resonant frequency f0 (or w0 in radians):

	(2.8)
	At this frequency, the reactance of the inductor is compensated by the reactance of the capacitor, and therefore the output voltage Vout is equal to the input voltage Vin . The transfer function for the voltage is given by:

	(2.9)

	poles
	This circuit has two poles given by:
	(2.10)
	The poles corresponding to Eqn. 2.10 are presented in Fig. 2-5. The poles are real for (), confounded for () and complex for ().
	Fig 2-5: Poles of the transfer function.
	The harmonic response is obtained by replacing s by jw in Eqn. 2.9:


	(2.11)
	where x is the misalignment. For the misalignment is approximately equal to and therefore proportional to the distance of the frequency from the resonance.


	bandwidth
	The power dissipated in the resistor is given by:
	(2.12)
	It is maximum when, meaning at the resonance. We therefore define the frequencies at –3 dB as those for which the power dissipated in the resistor is equal to half of the maximum power Pmax , which corresponds to the frequencies w1 and w2 for which...

	(2.13)
	Due to the geometric symmetry of around w0 , the frequencies at –3 dB, w1 and w2, are such that:

	(2.14)
	w1 and w2 can be calculated from:

	(2.15)
	The difference between the frequencies at –3 dB is defined as the bandwidth at –3 dB:

	(2.16)

	harmonic response
	Fig 2-6: Transfer function .

	Filtering of harmonics
	The attenuation of a sinusoidal signal which is a harmonic frequency of the resonant frequency can be calculated from:
	(2.17)
	The attenuation of harmonics is better when the quality factor is higher. This criterion can help when choosing the quality factor of a resonant circuit.

	voltage at the terminals of the capacitor at resonance
	One interesting property of the series resonant circuit is that the voltage at the terminals of the capacitor can become much higher than the applied voltage. The transfer function between the input voltage and the voltage at the capacitor terminals ...
	(2.18)
	At resonance, the gain is equal to the quality factor:

	(2.19)
	At resonance, the voltage at the capacitor terminals is thus equal to Q times the input voltage. Since the reactances of the inductor and the capacitor are equal at resonance, the voltage at the inductor terminals will also be Q times larger than the...



	Effect of the source resistance
	Fig 2-7: Series resonant circuit with source resistance.
	In the case in which the source resistance Rs is not negligible with respect to the load resistance RL, the transfer function of the circuit in Fig. 2-7 is given by:

	(2.20)
	The transfer function given by Eqn. 2.9 is multiplied by the attenuation factor introduced by the resistive divider operating at resonance. The quality factor is degraded by the presence of the source resistance:

	(2.21)
	The addition of a series resistance decreases the quality factor without changing the resonant frequency which remains equal to .


	parallel resonant Circuit
	The parallel resonant circuit shown in Fig. 2-8 is the dual of the series resonant circuit of Fig. 2-4. It has, therefore, all the properties stated for the series resonant circuit. In this case, the admittance has a minimum when the susceptance of t...
	Fig 2-8: Resonant parallel circuit.
	The quality factor is simply given by:

	(2.22)
	In contrast to the series resonant circuit, the quality factor of the parallel resonant circuit is proportional to the parallel resistance. The higher this resistance, the higher the quality factor. The impedance of the parallel resonant circuit is s...

	(2.23)
	As with the voltage at the terminals of the capacitor and the inductor of the series resonant circuit, the currents through those same elements of the parallel resonant circuit are Q times higher than the input current Iin at resonance.


	parallel resonant Circuit with losses
	The impedance of the circuit in Fig. 2-9 is given by:
	(2.24)
	For , the zero can be considered to be practically at the origin and Eqn. 2.24 is identical to Eqn. 2.23 of the parallel resonant circuit, as long as or:

	(2.25)
	Fig 2-9: Approximation of the resonant circuit with losses.
	Therefore, for , the resonant circuit with a resistance rs in series with the inductor can be replaced by a parallel resonant circuit with a parallel resistance Rp given by Eqn. 2.25. This approximation is almost always valid because one does not cho...



	Coupling parallel resonant circuits
	For a given resonant frequency, the quality factor sets the bandwidth, but the sharpness of the filter is uniquely determined by the filter’s order, that is to say by the number of reactive components. To obtain a filter with a form factor SF close...
	Fig 2-10: Definitions related to filter response.
	Fig 2-11: Selectivity with one or two coupled resonant circuits.

	critical coupling
	The intensity of the coupling between two resonant circuits will strongly influence the transfer function of the resulting filter. We distinguish three situations:
	a) Undercoupling: too little coupling leads to high insertion losses (cf Fig. 2-10 and 2-12);
	b) Overcoupling: too much coupling will misalign the two resonant circuits, which results in peaks at the extremities of the passband and a dip in the passband;
	c) Critical coupling: the two circuits are just coupled enough to avoid insertion losses while keeping a sufficient passband.
	Fig 2-12: The different coupling situations.
	There are three ways to couple two resonant circuits:
	1) Capacitive coupling;

	2) Inductive coupling;
	3) Coupling by transformer.
	Another more sophisticated way to couple resonant circuits is that of LC ladder filters.


	capacitive coupling (1/2)
	The circuit corresponding to the capacitive coupling of two resonant circuits is presented in Fig. 2-13. The coupling is realized by the capacitor Cc whose value determines whether the coupling is under, at, or over the critical level.
	Fig 2-13: Capacitive coupling of two resonant circuits.
	The circuit in Fig. 2-13 can be modified by considering that the coupling admittance (of Cc) can be replaced by the equivalent circuit of Fig. 2-14.

	Fig 2-14: Equivalent circuit of the coupling admittance.
	Applying this substitution to the circuit of Fig. 2-13 we obtain the circuit in Fig. 2-15 in which we clearly see two parallel resonant circuits with admittance Y1 and Y2 , along with the coupling by the dependent current sources.

	Fig 2-15: Equivalent circuit for circuit in Fig. 2-13.

	capacitive coupling (2/2)
	Each resonant circuit in Fig. 2-15 is characterized by its resonant frequency and its quality factor:
	(2.26)
	The admittance of each of the resonant circuits is given by:

	(2.27)
	The transimpedance is thus given by:

	(2.28)
	Considering that the resonant frequencies are equal, , we get:

	(2.29)
	Q is the average quality factor, and q the quality factor disparity coefficient which is minimum and equal to one for . It is represented in Fig. 2-16 as a function of the ratio .
	k is the coupling coefficient which is always less than one because C1 and C2 are both greater than Cc (cf Fig. 2-15).
	Fig 2-16: Quality factor disparity coefficient.


	inductive coupling
	The coupling between two parallel resonant circuits can also be carried out by using a coupling inductor Lc , as shown in Fig. 2- 17 a).
	Fig 2-17: Resonant circuits coupled inductively.
	Eqn. 2.28 remains true with . In the case in which the resonant frequencies are equal, we get:

	(2.30)
	All the magnitudes defined in (2.29) remain valid except K which becomes where is given by:

	(2.31)

	Coupling by transformer
	The coupling of two parallel resonant circuits can also be carried out by using a transformer as shown in Fig. 2-18.
	Fig 2-18: Resonant circuits coupled by a transformer.
	The circuit of Fig. 2-18 can be modified by using the equivalence relation shown in Fig. 2-19. The circuit in Fig. 2-18 is thus returned to that of Fig. 2-17.

	Fig 2-19: Equivalent circuit of a coupling transformer.
	The relationships obtained for the circuit with inductive coupling are therefore also valid for coupling by transformer, by using the following equalities:

	(2.32)

	critical and transitional coupling (1/2)
	The value of the transimpedance Zm at resonance is obtained by setting in equations (2.29) and (2.30):
	(2.33)
	The + sign corresponds to capacitive coupling and the - sign to inductive (or transformer). The magnitude of the transimpedance at resonance depends on the coupling factor K. Critical coupling results for the value of K which maximizes , which is :

	(2.34)
	In fact, it corresponds to the maximum transfer of power to the resistor R2 and therefore to impedance matching.
	When the coupling factor K is higher than a certain value called the transitional coupling Kt, the magnitude of the transimpedance shows two peaks at the frequencies and as indicated in Fig. 2-20.
	Fig 2-20: Peaks due to overcoupling.
	The value of the maxima Zm is given by:


	(2.35)
	One remarks that for or for .


	critical and transitional coupling (2/2)
	Fig. 2-21 a) shows the magnitude of as a function of misalignment Qx for different values of the normalized coupling coefficient K for the case in which . We remark that for , the curves show maxima where ZM equals Zmax . Fig. 2-21 b) shows the magni...
	Fig 2-21: Magnitude of the transimpedance as a function of Qx

	active Coupling
	It is also possible to couple resonant circuits using active devices such as transistors. An example of such a coupling is shown in Fig. 2-22 a). In the case in which all the resonant circuits in the diagram in Fig. 2-22 a) are identical (same freque...
	(2.36)
	where Q is the quality factor of each of the resonant circuits and n the number of resonant circuits.
	Fig 2-22: Active coupling of resonant circuits.
	Fig. 2-22 b) shows the global quality factor normalized to the quality factor of one single resonant circuit as a function of the number of stages. Notice that Qtot increases relatively slowly and therefore that the gain in selectivity is only intere...




